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Abstract 

Merton (1974) structural model uses market equity timely information for default prediction. 

The literature describes several specifications for the model application, including methods 

presumably used by practitioners. However, recent studies demonstrate that these methods 

result in inferior estimates compared to simpler substitutes. We empirically examine 

specification alternatives concluding that prediction goodness is only slightly sensitive to the 

default barrier, whereas the choice of assets expected return and volatility is significant. Equity 

historical returns and volatility result in under-biased estimates for assets expected returns and 

volatility, especially for defaulting firms. Acknowledging these characteristics we suggest 

specifications that improve the model accuracy. 
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Introduction 

Merton (1974) and Black and Scholes (1973) presented the basic approach for the valuation of stocks 

and corporate bonds as derivatives on the firm’s assets. Merton (1974) is a structural model used for 

default prediction, viewing the firm’s equity as a call option on its assets, because equity holders are 

entitled to the residual value of the firm after all its obligations are paid. Many theoretical studies 

suggested models that relax some of the Merton model restrictive assumptions.1  However, empirical 

literature mainly focused on the application of the original model.2  A major benchmark in these 

studies is the KMV model. KMV was founded in 1989 offering a commercial extension of Merton’s 

model using market-based data. In 2002 it was acquired by Moody’s and became Moody’s-KMV.  

KMV published a number of papers which reveal some of its methods (see Keenan and Sobehart, 

1999; Keenan, Sobehart and Stein, 2000; Crosbie and Bohn, 2003). Some of the specifications made 

by KMV were adopted by the academic literature. Vassalou and Xing (2004), Campbell, Hilscher, 

and Szilagyi (2007) are examples for such studies. 

Only a few studies attempted to evaluate the accuracy of Merton’s model under these specifications. 

Hillegeist, Keating, Cram, and Lundstedt (2004) compared the predictive power of the Merton model 

to Altman (1968) and Ohlson (1980) models (Z-score and O-score) and came to the conclusion that 

the Merton model outperforms these models. Duffie, Saita, and Wang (2007) showed that 

macroeconomic variables such as interest rate, historical stock return and historical market return 

have default prediction ability even after controlling for Merton model’s distance to default. 

Campbell, Hilscher, and Szilagyi (2007), using a hazard model, combined Merton model default 

probability with other variables relevant to default prediction. They also found that Merton model 

probabilities have relatively little contribution to the predictive power. Bharath and Shumway (2008) 

presented a “naïve” application of Merton model that outperformed the complex application of 

                                                            
1 See for example Black and Cox (1976), Geske (1977), Longstaff and Schwartz (1995), Collin‐Dufresne and 
Goldstein (2001), Hsu Requejo and Santa‐Clara (2004), Leland (1994), Leland and Toft (1996), Acharya and 
Carpenter (2002). 

2 An exceptional line of empirical studies (such as Brockman and Turtle, 2003) deals with the application of 
models in which the equity is viewed as a Down‐and‐out call option on the firm’s assets. These models are not 
in the scope of this study. 
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Merton model (based on presumably Moody’s-KMV specifications).3 Another line of literature 

examined structural models ability to explain credit spreads and concluded that Merton model 

predictions underestimate market spreads.4 

In this paper we examine the sensitivity of Merton model’s default predictability to its parameter 

specifications.  We assess the causes for this sensitivity and for prior studies lukewarm performance 

and conclude by providing a few prescriptions to enhance the model accuracy. We focus on the three 

main components of the model: the default barrier, the expected return on firm assets and the firm 

assets return volatility (hereafter, asset volatility). For this purpose we construct a sample with annual 

observations of firms from the merged CRSP/Compustat database during the period 1988-2008. We 

also gather information on default events during 1989-2009 from Standard and Poor’s (S&P) and 

Moody’s rating agencies reports. After filtering our sample includes 41,831 annual observations of 

5,845 firms, of which 322 observations defaulted in the following year.  

For each specification of the model we construct a Receiver Operating Characteristic (ROC) curve. 

This method is relatively common for the comparison of prediction models since it does not require 

setting a priori the desired cutoff point between cost of type I error and cost of type II error. Another 

advantage of using ROC curves, compared to methods used in some prior studies, is that it enables 

statistical inference with the non-parametric test suggested by DeLong, DeLong and Clarke-Pearson 

(2008), testing the statistical significance of the differences between the ROC curves (of two models). 

Prior studies, such as Bharath and Shumway (2008), focused mainly on the rate of defaulters within 

the first deciles of firms (highest predicted default probabilities) and did not offer a robust statistical 

test for differences between models.  

Another approach we use to understand the adequacy of various specifications is the study of firms’ 

characteristics changes on a path to default. For this purpose we focus on 137 defaulting firms with 

                                                            
3 Chava and Purnanandam (2010) used the naïve model as a proxy for credit risk. 
 
4  See for example, Jones, Mason and Rosenfeld (1984), Huang and Hunag (2003), Eom, Helwege and Huang 
(2008). 
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data available for the five years preceding the default event and compare their level of debt, stock 

returns, equity volatility and assets volatility to those of a group of 137 non-defaulting firms. 

We find that Merton model accuracy is only slightly sensitive to the specification of the default 

barrier. We explain that this is a result of the calculated assets value and volatility dependence on the 

default barrier. On one hand, ceteris paribus, a low setting of default barrier for risky firms reduces 

their probability of default. On the other hand, such misspecification also causes overestimation of 

assets volatility and underestimation of assets value, thus increasing the default probability. 

Therefore, a deviation of the default barrier from the common practices has a relatively small effect 

on the model accuracy. 

We also show that using historical equity return as a proxy for expected assets return is questionable.5 

In particular, realized returns for risky firms are low and sometimes negative. While negative stock 

returns may be a predictive indicator for default, it cannot be a good proxy for forward-looking 

expected returns. Such a specification simply reduces the precision of the model. There are several 

ways to minimize the effect of negative returns. Aiming to estimate forward looking expected returns, 

we present a CAPM based procedure and results. However, we show that setting expected assets 

return equal to the highest of realized stock return and the risk-free interest rate seems preferable 

among the alternatives examined in this study. 

Our calculations demonstrate that assets volatility extracted from Black and Scholes (1973) using the 

historical volatility of equity is under-biased, especially for defaulting firms. This is mainly because 

the value of equity used for this purpose is up-to-date and forward looking while the backward 

looking historical volatility of equity is estimated on stock returns that might exhibit mild volatility 

prior to the deterioration in the financial state of the firm. We show that on average the difference 

between implied volatility (of stock options) and historical volatility is positive. This difference is 

larger for defaulting firms than for non-defaulting firms. Hence, model accuracy seems higher using 

                                                            
5  This specification was used by  Bharath and Shumway (2008), in their naïve model.  We have similar doubts 
regarding the use of historical equity returns in the iterative method used by Vassalou and Xing (2004), Bharath 
and Shumway (2008), and others. 
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equity volatility than using the theoretical asset volatility calculated by simultaneously solving Black 

and Scholes (1973) and the volatility relation of Jones, Mason and Rosenfeld (1984).  

Finally we analyze Bharath and Shumway (2008) naïve model. We show that the superiority of this 

model to the more computationally intensive Merton model is due to its special “estimation” of assets 

volatility. Hence, following our analysis of various alternatives, we suggest a specification of Merton 

model that outperforms this naïve model. 

The organization of the paper is as follows. Section 1 describes the Merton model. Section 2 

discusses the difficulties and common practices in the application of Merton model. In section 3 we 

present the methodology and particularly the way we compare model accuracy under various 

specifications. Section 4 describes the data. In section 5 we present and discuss the results. Section 6 

concludes. 

1. Merton model  

Merton model uses the firm equity value, its debt face value, and the volatility of equity returns to 

evaluate the firm assets and debt.  The model assumes that the firm has issued one zero-coupon bond. 

The firm defaults at the bond maturity (in time T) when the value of its assets (A) falls below the 

amount of debt it has to repay (D). Otherwise the firm pays its debt in full and the remaining value is 

its equity ET = max(AT-D,0).  The model assumes that A follows a geometric Brownian motion 

(GBM): 

ܣ݀ (1) ൌ ஺ߤ ∙ ܣ ∙ ݐ݀ ൅ ஺ߪ ∙ ܣ ∙ ܹ݀ 

where ߤ஺ is the expected continuous-compounded return on A, ߪ஺ is the volatility of assets returns 

and dW is the standard Wiener process.6  

                                                            
6 We omit the subscript t from A and W for convenience.  Obviously these vary with time.  The drift ߤ஺ and the 
volatility ߪ஺  are assumed constant in this basic (classical) model. 
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The model applies the Black and Scholes (1973) formula to calculate the value of the firm equity as a 

call option on its assets with expiration time T and an exercise price equal to the amount of debt (D): 

ܧ (2) ൌ ܰሺ݀ሻܣ െ ܰሺ݀	௥்ି݁ܦ െ  ஺√ܶሻߪ

(3) ݀ ൌ
୪୬ሺ஺ ஽⁄ ሻାൣ௥ା଴.ହఙಲ

మ൧்

ఙಲ√்
 

where ܧ is the value of the firm equity, r is the risk free interest rate, and N(•) is the cumulative 

standard normal distribution function.7 Jones, Mason, and Rosenfeld (1984) show that under the 

model assumptions the relation between the equity volatility (ߪா) and the assets volatility (ߪ஺) is 

ாߪ ൌ
஺

ா
∙
డா

డ஺
∙   ஺ . Under the Black and Scholes formula it can be shown thatߪ

డா

డ஺
ൌ ܰሺ݀ሻ, so the 

relation between the volatilities is:  

ாߪ    (4) ൌ
஺

ா
ܰሺ݀ሻߪ஺  

Solving equations (2) and (4) simultaneously results in the values of A and ߪ஺ which can be used to 

calculate a Distance to Default (DD) of the firm, defined by: 

ܦܦ (5) ൌ
୪୬ቀಲ

ವ
ቁାൣఓಲି଴.ହఙಲ

మ൧்

ఙಲ√்
 

DD may be regarded as the normalized distance between the firm assets value (A) and the face value 

of its debt (D).8 As the log asset value is normally distributed under the GBM, PD – the probability of 

default (the probability that the call option is not exercised) is: 

ܦܲ (6) ൌ ܰሺെܦܦሻ 

  

                                                            
7 E and A in (2) and (3) are the values of equity and assets at time t = 0.  The risk‐free rate r is assumed 
constant. 

8 Taking into account the expected returns on the assets. 
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2. Application of the Merton model 

The application of the model in practice requires several refinements.  T is usually assumed to be 1 

year. The annualized historical volatility of the equity is frequently the choice for ߪா .9  It is often 

estimated over the preceding one year period and we denote it by ߪா,ିଵ. Another issue is the amount 

of debt that is relevant to a potential default during a one year period. Total debt is inadequate when 

not all of it is due in one year, as the firm may remain solvent even when the value of its assets falls 

below its total liabilities. Using the short term debt (debt maturing in one year) for the default barrier 

D would be often wrong, for example, when there are covenants that force the firm to serve other 

debts when its financial situation deteriorates. Prior studies generally follow KMV (Crosbie and 

Bohn, 2003) and chose short-term debt plus half of the long term debt for the default barrier.10  In this 

work we use ܦ ൌ ܦܶܵ ൅ ݇ ∙  is the ܦܶܮ ,is the short term debt ܦܶܵ for the default barrier, where ܦܶܮ

long term debt and ݇ is the ܦܶܮ multiplier. We test the predictability power of the model for various 

values of k and check whether the KMV choice of ݇ ൌ 0.5 outperforms the alternatives. 

Since the values of a firm's assets (A) and their volatility (ߪ஺) are not observed, we solve equations (2) 

and (4) simultaneously.11  This method was originally proposed by Merton (1974) and refined by 

Jones et al (1984), it is also implemented in Hillegeist, Keating, Cram, and Lundstedt (2004) and 

Campbell, Hilscher and Szilagyi (2008).  The expected asset return ߤ஺, has to be estimated separately. 

Campbell et al. (2008), for example, used a constant market premium and calculated it as ߤ஺ ൌ ݎ ൅

                                                            
9 A forward looking implied volatility is probably a better choice. However it is not available for many firms and 
in its extraction from market data is complicated by liquidity and volatility smiles. 

10 For example: Bharath and Shumway (2008), Vassalou and Xing (2004), Duffie, Saita, and Wang (2007), 
Campbell, Hilscher, and Szilagyi (2008). 

11 Another approach, used by Bharath and Shumway (2008), Vassalou and Xing (2004) and Duffie, Saita, and 
Wang  (2007))  is  a  complicated  iterative  procedure.    In  this  process  an  initial  guess  value  of ߪ஺  is  used  in 
equation (2) in order to infer the market value of the assets (ܣ) for the firm on a daily basis in the prior year. 
This generates a time series which is used to derive an “updated” ߪ஺. This new ߪ஺  is used to compute a new 
time series of the firm's assets. The procedure is repeated until the volatility used to calculate the time series 
converges to the volatility of the calculated values. Then, the last time series is used to infer the values of ߪ஺ 
and ߤ஺ which are used in equation (5) of the model.  Bharath and Shumway (2008) showed that this approach 
results are in fact similar or even slightly inferior to the results of the simultaneous approach implemented in 
this paper. 
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0.06. In this work we examine several alternatives for ߤ஺. Under the first two alternatives we apply 

the CAPM model ߤ஺ ൌ ݎ ൅ ஺ߚ ∙   .஺ is the assets betaߚ is the market premium and ܲܯ where ,ܲܯ

First we use daily observations from the previous year on daily stock returns and the CRSP value 

weighted NYSE-NASDAQ-AMEX index to estimate the equity beta ߚா. Then we use the relation   

஺ߚ ൌ ாߚ ∙
ఙಲ
ఙಶ

  and the values of ߚா, ,஺ߪ ாߪ  to calculate ߚ஺.12  We use two alternative values for MP. 

The first is a constant rate of 6%, which results in ߤ஺ ൌ ெ௉ୀ଴.଴଺ߤ ൌ ݎ ൅ ஺ߚ ∙ 0.06. The second 

assumes a variable market premium which equals the historical excess return of the S&P500 index in 

the previous year. The later results in 	ߤ஺ ൌ ெ௉ୀௌ&௉ߤ ൌ ݎ ൅ ஺ߚ ∙ ሺܵ&ܲ500ିଵ െ  ሻ, where ܵ&ܲ500ିଵݎ

is the annual rate of return of the S&P500 index in the previous year. For our third alternative we 

simply assume that the expected asset return equals the historical equity return of the preceding year, 

 ா,ିଵ. We use this alternative as a benchmark for the other two methods and in accordance to theݎ

naïve model of Bharath and Shumway (2008). Historical equity return (ݎா,ିଵ) is sometimes negative. 

Hence we also examine the possibility that a floor for the assets expected return is ݎ and thus examine 

the results of ߤ஺ ൌ max	ሺݎ,  ா,ିଵሻ. Another alternative is to assume that the assets expected returnݎ

equals the risk-free rate, ߤ஺ ൌ  In this case the probability measure that governs the asset and  .ݎ

default processes is the risk-neutral measure. We also examine the alternative of a constant asset 

return ߤ஺ ൌ 0.09. 

For comparison, we use the naïve alternative of Bharath and Shumway (2008) for Merton model. In 

this naïve model the default barrier D is  ܦ ൌ ܦܶܵ ൅ 0.5 ∙  The value of assets is set to be the  .ܦܶܮ

sum of the default barrier and equity values: ܣ ൌ ܦ ൅  The expected return of assets is set equal to .ܧ

the historical return on the firm stock price in the previous year: ߤ஺ ൌ  ே௔௜௩௘ߪ ா,ିଵ. Assets volatilityݎ

                                                            
12 The relation between the assets and equity betas is derived from the expression of a Black‐Scholes call beta  

ாߚ ൌ 	
஺

ா
∙ ܰሺ݀ሻ ∙  ஺  where we replace the call option and the underlying by the equity and the assetsߚ

respectively (see for example Coval and Shumway 2001).  We then use equation (4) to replace 
஺

ா
ܰሺ݀ሻ by the 

volatilities ratio  
ఙಶ
ఙಲ
. 
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is assumed to be a value-weighted average of historical equity volatility (ߪா,ିଵ) and a “special” value 

of the debt volatility:	13 

ሺ7ሻ 				ߪ஽ ൌ 0.05 ൅ 0.25 ∙ 		ா,ିଵߪ

ே௔௜௩௘ߪ				 (8) ൌ
ா

ாା஽
ா,ିଵߪ ൅

஽

ாା஽
ሺ0.05 ൅ 0.25 ∙  .ா,ିଵሻߪ

The naive Distance to Default is (for T=1 year): 

ே௔௜௩௘ܦܦ ൌ
୪୬	ሾሺாା஽ሻ/஽ሻሿା௥ಶ,షభି଴.ହ∙ሺఙಿೌ೔ೡ೐ሻమ

ఙಿೌ೔ೡ೐
 , 

and the default probability is: ܲܦே௔௜௩௘ ൌ ܰሺെܦܦே௔௜௩௘ሻ. 

3. Methodology  

Examination of a default model goodness may be of two types. The first is Model’s Power, the 

separation capability of the model between observations of default and observations of solvency. This 

power relates to the goodness of the order in which the model ranks the observations. The second 

type, Model's Calibration, refers to the default probability values produced by the model and how 

they fit real probabilities. For example, consider a model that results in the following default 

probabilities (PD) for three companies (A, B, C): ܲܦ஺ ൌ 0.1, ஻ܦܲ ൌ 0.05, ஼ܦܲ ൌ 0.01. The 

model’s power relates to the goodness of the model outcome in ranking the probabilities of default in 

the right order: ܲܦ஺ ൐ ஻ܦܲ ൐  ஼.  However, the goodness of the model’s calibration relates to theܦܲ

accuracy of the probability values generated by the model. Stein (2002) argues that calibration 

improves when model power increases. Any calibration method should maintain the ranking order of 

the model. Hence, we follow prior studies and focus on model power. For this purpose we regard the 

probabilities (PD) calculated by a model as scores.14 

                                                            
13 We are not familiar with the foundations and origin of this assumed relation between the debt and equity 
volatilities. 
14 This is the common practice in the bulk of prior literature and research, yet often the distinction between 
model power and calibration is not explicitly mentioned. 
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Critical values of PD may be used by investors, lenders, or regulators to classify firms to high-risk or 

low-risk categories. The classification might be inaccurate. Type I error relates to default of a firm 

classified to the low-risk category while a type II error relates to the solvency of a firm classified to 

the high-risk category (a “false alarm”). It is customary to estimate the type I and type II error rates 

for each critical value of PD using a database of PD observations and their related default/solvency 

realizations. Consider a critical value α. Type I error rate is the number of defaulting firms classified 

as low-risk (ܲܦ ൏  divided by the total number of defaulting firms. Type II error rate is the number (ߙ

of non-defaulting firms classified as high-risk (ܲܦ ൒  .divided by the total number of solvent firms (ߙ

There is an obvious tradeoff between type I and type II errors. As one increases the critical value, the 

rate of type I error increases and rate of type II error decreases. 

The Receiver Operating Characteristic (ROC) curve is a tool for comparing powers of alternative 

default models. Figure 1 shows ROC curves demonstrating the tradeoff between type I error and type 

II error for all possible critical values. The observations are ordered by type I error rate and then 

sensitivity rate (1 minus type II error rate) is plotted versus type I error rate (1 minus specifity rate). A 

random model (with no predictability power) is simply the 45 degrees line. Model A is superior to 

model B when the ROC curve of A is always above the ROC curve of B. When the curves cross, one 

may compare the Area Under the Curve (AUC) related to the alternative models. An AUC value is in 

the range [0, 1] and the AUC of a random model equals 0.5. We use the nonparametric approach of 

DeLong, DeLong and Clarke-Pearson (1988) to test the statistical significance of differences between 

the AUC of alternative models. This test which also controls for correlation between examined curves 

is considered the most advanced statistics for ROC curves comparison. 

Prior studies such as Bharath and Shumway (2008) measured the accuracy of default models using 

the defaulting firms’ fraction in the lowest-quality deciles among all defaulting firms in the sample. 

This method is in fact based on particular points on a power curve and does not encompass the 

information in the entire curve.  A power curve shows the cumulative percentage of defaulting firms 

among all defaulting firms for each percentile of the predicting score.  In other words, it shows the 

percentage of defaulting firms that are detected for each threshold value of the score (ߙ in the above 
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PD example). The Accuracy Ratio (AR) is twice the area between the 45⁰ line and the power curve 

and it is equivalent to ROC curve comparison, in fact ܴܣ ൌ 2 ∙ ܥܷܣ െ 1.15 Hence the deciles 

comparison method is also a limited snapshot of particular points on the ROC curve. A major 

advantage of using ROC curves is the availability of statistical inference methods and tests such as 

that of DeLong et al. (1988). 

In addition to ROC curve analysis we also examine changes of selected variables prior to default. Our 

sample includes 137 defaulting firms with adequate input data for Merton model in each of the five 

years before the default event. We designate December 31 day prior to the year of the default event as 

time -1. (e.g., for a firm that defaulted during the year 2005, time -1 refers to the estimation of 31 

December 2004; time -2 denotes the estimation of 31 December 2003 and so on.) We compare the 

defaulting firms to a control group of 137 non-defaulting firms of the same period.16 

 
4. Data 

The initial sample for this study includes all firms in the merged CRSP-COMPUSTAT database of 

the period 1988 to 2008 and default events of 1989 to 2009. Daily stock returns and stock prices are 

taken from CRSP; book value of assets, short-term debt, long-term debt and the numbers of shares 

outstanding are from COMPUSTAT. For the risk-free interest rate ݎ we use the 1-year Treasury bill 

rate obtained from the Federal Reserve Board Statistics. 

Our sources for default events are the annual default reports of Moody's and S&P for the years 1989-

2009. Since these reports mainly relate to large firms, we filter out all annual observations of firms 

with book assets value bellow 150 million USD.17 Then we drop all firms with fiscal year that does 

                                                            
15 See Engelman, Hayden and Tasche (2003) 

16 For a firm which defaulted during the year 2005, we randomly select a non‐defaulting firm which operated 
in the years 2000‐2005. Using the same principle we used for defaulting firm, we mark 31 December 2004 as 
time ‐1, 31 December 2003 as time ‐2 and so forth. 

17 These reports cover firms that have been rated sometime and hence tend to be biased toward large firms.  
Therefore our default information regarding small firms is not reliable and we filter them out of the sample.  
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not end in December 31.18  Similar to Bharath and Shumway (2008) and others we exclude financial 

firms (SIC Codes: 6021, 6022, 6029, 6035, and 6036). This filtering is needed since financial firms 

are characterized by high leverage and strict regulations. We also filter out defaulting firms for three 

years subsequent to a default event.19 Our final sample contains 41,831 annual observations of 5,846 

firms with 322 cases of defaults. 

Table 1 shows the distribution of the sample across the years. The number of annual observations 

varies from 1,234 (in 1990) to 2,423 (in 2007) and the annual number of defaults varies from 0 (in 

1995) to 60 (in 2001).  As expected, defaults vary over time, peaking in 1999-2003 and in 2009. The 

overall number of defaults (322) seems sufficient for our analysis. 

We use stock price data to compute the annual return ݎா,ିଵ, and the annualized standard deviation of 

daily returns ߪா,ିଵ 
 
for each year preceding an annual observation of a company. The beta of stock 

returns (ߚா) is estimated in a standard technique using the CRSP value-weighted return of 

NYSE/NASDAQ/AMEX index as the market index. The market value of equity	ܧ for each annual 

observation equals the stock prices times the number of outstanding shares. Using a MATLAB 

program we simultaneously solve equations (2) and (4) for each annual observation and compute the 

assets value and volatility (ܣ and ߪ஺). Table 2 provides descriptive statistics of the sample. The 

average market value in our sample is 4,750 which is greater than 808.8 of Bharath and Shumway 

(2008). We relate this difference to the exclusion of small firms from our sample. Nevertheless, the 

average annual stock returns of both samples are similar, 14.0 percent and 13.75 percent 

                                                            
18 An estimation of distance to default (DD) uses financial data which is published on annual or quarterly basis 
and market data which is updated daily. A monthly estimation of DD, for example, is prone to over‐emphasize 
market data  influence since accounting data are constant for 3 subsequent months (quarterly update) or 12 
months (annual update) while market data changes daily usually. Therefore we choose to estimate the model 
on an annual basis using accounting data  from  the annual  report only.  In order  to  reduce  time unobserved 
heterogeneity  across  observations, we  choose  using  a  specific  day  in  every  year,  and  therefore  our  final 
sample includes only firms with fiscal year ending on December 31.  

19 For example, if a firm defaults in 2000, we estimate its probability to default on 31 December 1999 and then 
drop this firm from our sample for the years 2000, 2001 and 2002. 

  



13 

respectively.20 The average ߚா in our filtered sample is 0.805. Among other possible reasons, we can 

relate an average ߚா smaller than 1 to the selection of our sample which excludes small firms. 

 
5. Results 

We begin by an evaluation of the effects of changes to the default barrier, the expected asset return 

and the assets returns volatility, using ROC curves and AUC methods (as discussed above). We then 

study the properties of Bharath and Shummway (2008) naïve model and examine what appears to 

make this naïve model more accurate than the complex application of the Merton model.21 Then we 

suggest a specification that seems to outperform the complex model and the naïve model of Bharath 

and Shumway (2008). 

5.1 The default barrier 

We estimate the model using five long-term debt (LTD) multipliers (k) values. For that purpose we 

calculate ܣ and ߪ஺ by solving equations (2) and (4) simultaneously and assume that the assets drift 

஺ߤ ൌ ெ௉ୀ଴.଴଺ߤ ൌ ௙ݎ ൅ ஺ߚ ∙ 0.06. The resultant ROC curves (Figure 2) illustrate that the predictive 

powers of the five default barriers are very similar. Analyzing the AUC values for these ROC curves 

shows that although the greatest AUC is for k=0.5, the largest gap between two AUC values is merely 

0.001. DeLong et al. (1988) test in Table 3 reveals that one cannot reject the hypothesis that the 

AUCs for k=0.1, k=0.3, k=0.7 equal the AUC of k=0.5.  

                                                            
20 It may seem odd that the minimum value of annual stock return is below ‐100%. Notice however that ݎா,ିଵ 
stands for the continuously‐compounded annual return.  e.g. in a rare case, when a stock drops by 80% in a 
year, its continuous rate of return is ln(0.2) = ‐161% per annum.  Bharath and Shumway (2008) winsorized 
their sample and hence their minimum value of annual stock return was ‐85.45%. However, their minimum 
value for annual asset return was also extremely low: ‐253.58%. 

 
21  Lacking a better word, we use ‘complex’ to refer to applications  of Merton model that do not utilize short‐
cuts such as that of the naïve model of Bharath and Shummway (2008), our simplified solution, etc.  The 
complex application of this paper is the simultaneous solution of equations (2) and (4) with its various 
specification alternatives.  As presented earlier, Bharath and Shummway (2008) also compared their results to 
another, more complex application of the model, utilizing the iterative method presumably developed and 
used by KMV. 
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The AUC for the various k specifications is around 0.92 which is equivalent to an Accuracy Ratio of 

0.84. Duffie et al. (2007) for example achieved an AR of 0.87 using a much more complex model. 

One cannot compare models by comparing their AUC or AR based on different samples, however, 

this comparison may support the adequacy of our sample. 

Table 4 shows the evolution of ܣ/ܦܶܮ prior to default, where ܣ is obtained from the simultaneous 

solution of equations (2) and (4) with ݇ ൌ 0.5 for the default barrier.22 Using t tests and Wilcoxon 

rank-sum (Mann-Whitney) tests we find statistically significant differences between ܣ/ܦܶܮ ratio of 

defaulting and non-defaulting firms. Furthermore, the gap between the two groups increases as firms 

come nearer to the default event. The average value for the defaulting firms, five years before default 

is 0.433 in comparison to 0.269 for the non-defaulting firms. As time passes, the ܣ/ܦܶܮ ratio of the 

non-defaulting firms slightly increases whereas the ratio for the defaulting firms rises dramatically.23 

A year before default the average ratio for the defaulting firms reaches 0.754 while the average ratio 

for the non-defaulting firms is 0.325 only. 

It appears that the model power is only slightly sensitive to the ܦܶܮ multiplier while ܦܶܮ by itself 

exhibits predictive power.  This somewhat puzzling behavior results in from the calculation method 

of ܣ and ߪ஺. The firm equity is regarded as a call option on the firm assets. Hence, an under-

specification of the strike price (default barrier) results in an underestimation of the underlying assets 

value (ܣ) and overestimation of the assets volatility (ߪ஺) in a simultaneous solution of equations (2) 

and (4).  Underestimation of ܣ or overestimation of ߪ஺ results in a reduction in the distance to default 

and thus an increase in the probability of default, hence reducing the sensitivity of PD to changes in k.  

The underestimation of the probability of default caused directly from under-specification of the 

default barrier is compensated indirectly by underestimation of ܣ and overestimation of ߪ஺. This 

                                                            
22 This is done on two samples of 137 firms each, one of defaulting firms and the other of non‐defaulting firms, 
as described above. 
 
23 The increase in the ratio for non‐defaulting firms may be associated with systematic risk. This is due to the 
fact that the firms in the control sample are matched to the defaulting firm calendar year of default. Hence, if 
default risk has a systematic component we may, on average, expect financial deterioration also among the 
control group firms in the years prior to the defaulting firm default. 
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seems to explain the model low sensitivity to the default barrier specification.24 Table 5 shows the 

properties of ܣ and ߪ஺.  As expected, for lower values of the default barrier (small k) we find lower 

mean and median ܣ and higher mean and median ߪ஺. We use t tests and Wilcoxon sign-ranked tests 

and find that the differences of values resulted from various specifications of k compared to the 

values calculated using k=0.5 are statistically significant . 

Table 6 shows that PD is highly skewed, as expected.  Its mean and median are widely apart under 

each of the five specification of the LTD multiplier, e.g. for ݇ ൌ 0.5 the mean PD is 0.0196 and the 

median is 4.67 ∙ 10ି଻.  Moreover, even the 95% percentile is very small and lower than the mean PD 

for any ݇ we used.  As defaults are rare events (often about 1 percent of the sample), basing model 

comparison on deciles (as done in some prior studies) might be misleading. In our sample PD values 

start to vary substantially only within the highest five percent group.  Similarly DD (distance to 

default) is skewed, its mean and median are 5.466 and 4.905 respectively. Skewness and Kurtosis 

statistical tests reject (in 1 percent significance level) the hypothesis that DD is normally distributed. 

The skewness has no effect on the power analysis of Merton model because it has no effect on the 

ranking of firms according to their distance to default. 

The five LTD multipliers (k) we use yield substantially different probabilities of default. For example, 

using the highest LTD multiplier (0.9) the mean PD is 30% larger than the mean PD using the lowest 

LTD multiplier (0.1).  t tests and Wilcoxon sign-ranked tests reveal that the mean (median) 

probabilities of default for k=0.1, k=0.3 are lower than those of k=0.5, and for k=0.7, k=0.9 are higher 

than those of k=0.5.  This suggests that the calibration of the model is substantially different for each 

specification.  However, as discussed above, the model’s power (the ability to distinguish a defaulting 

firm from a non-defaulting firm) is relatively insensitive to k. 

  

                                                            
24  This somewhat counter intuitive result is caused when we maintain the equity value and the equity 
volatility constant.  In “real life” changing the debt level of a firm, or its default barrier, would affect its equity 
level and probably its equity volatility too. 
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5.2 The expected return on the firm's assets (࡭ࣆ) 

We examine several alternatives to assess the model sensitivity to assets expected returns. In all cases 

we use k=0.5 and solve simultaneously equations (2) and (4) for A and ߪ஺. Recall our definitions: 

ெ௉ୀ଴.଴଺ߤ ൌ ݎ ൅ ஺ߚ ∙ 0.06 and ߤெ௉ୀௌ&௉ ൌ ݎ ൅ ஺ߚ ∙ ሺܵ&ܲ500ିଵ െ  ሻ, where ܵ&ܲ500ିଵ is the annualݎ

rate of return of the S&P500 index in the previous year and ߚ஺ ൌ ாߚ ∙
ఙಲ
ఙಶ

.   

Panel a of Table 7 lists the summary statistics of ߤ஺ under various specifications. The averages of 

 ெ௉ୀௌ&௉ହ଴଴ are similar. This is not surprising since the average annual excess return ofߤ ெ௉ୀ଴.଴଺ andߤ

the S&P500 index in our sample period is approximately 0.06. Naturally, the variance of ߤெ௉ୀௌ&௉ହ଴଴ 

is greater than that of ߤெ௉ୀ଴.଴଺. Overall, one would expect average ݎா,ିଵ to be higher than ߤ஺ because 

equity is a leveraged long position on assets, and indeed ݎா,ିଵ is larger than ߤெ௉ୀ଴.଴଺ and 

,ݎሺ	ݔܽ݉ ெ௉ୀௌ&௉ହ଴଴. However, as expected, the mean ofߤ   .ா,ିଵሻ is very high (0.274)ݎ

Panel b in Table 7 shows that using ߤ஺ ൌ ,ݎሺ	ݔܽ݉  ா,ିଵሻ results in the largest AUC. The AUC ofݎ

஺ߤ ൌ  ா,ିଵ. Theݎ ெ௉ୀ଴.଴଺ and the latter is slightly larger than that ofߤ is slightly larger than that of ݎ

fixed ߤ஺ ൌ 0.09 and ߤ஺ ൌ  result in the smallest AUCs. However, most of these differences	ெ௉ୀ଴.଴଺ߤ

are statistically insignificant. For example, the AUC of μ୅ ൌ  ா,ିଵ (0.9184) is only slightly smallerݎ

than that of ߤ஺ ൌ  ெ௉ୀ଴.଴଺ (0.9207) and the difference in statistically insignificant. The differenceߤ

between the AUC of  ߤ஺ ൌ ,ݎሺ	ݔܽ݉ ஺ߤ ா,ିଵሻ (0.9235) and that ofݎ ൌ  ெ௉ୀ଴.଴଺ (0.9207) is alsoߤ

statistically insignificant. ROC curves in Figure 3 show the predictive power of three alternatives: 

஺ߤ ൌ ஺ߤ ெ௉ୀௌ&௉ହ଴଴ andߤ ,ெ௉ୀ଴.଴଺ߤ ൌ  ா,ିଵ. The figure demonstrates that the model’s power isݎ

apparently insensitive to the specification set we use.   

It is interesting to point out that the AUC of ߤ஺ ൌ  ெ௉ୀ଴.଴଺ is close to the highest, demonstrating thatߤ

in this case β seems to outperform the predictability offered by historical equity returns ߤ஺ ൌ   .ா,ିଵݎ

Although the differences are not statistically significant, in comparing the performance of ߤெ௉ୀ଴.଴଺ 

and ߤெ௉ୀௌ&௉ହ଴଴, the constant market premium of 0.06 outperforms the predictability of prior year 

(historical) S&P500 market premium. 
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Table 8 and Figure 4 present the average rate of return on the firms' stock price, ݎா,ିଵ and ߤ஺ ൌ

 ெ௉ୀ଴.଴଺ when firms approach default. The average rate of return for the non-defaulting firms isߤ

positive at all time points, while the average rate of return for the defaulting firms is near zero at time 

-3 and is negative closer to default (time -2 and time -1). When defaulting firms approach the default 

event, the rate of return decreases dramatically averaging -0.68 one year prior to default.  

To calculate real default probabilities by ܲܦ ൌ ܰሺെܦܦሻ, instead of risk-neutral probabilities, ߤ஺ 

replaces ݎ for the drift in DD (equation 5). It is logical to expect that investors demand higher returns 

from a riskier firm compared to a safer one. However, ݎா,ିଵ is the realized historical return (not the 

forward looking expected return) and its negative value may indicate financial deterioration prior to 

default. This is supported by our data and results, see Table 8 and figure 4 which show the values of 

 ா,ିଵ in the years prior to default.  Defaulting and non-defaulting firms have on averageݎ ஺ andߤ

similar returns five years before default. However, when firms approach default, their average equity 

returns fall beneath those of non-defaulting firms and even become negative in the two years prior to 

default. This result is consistent with prior papers such as Vassalou and Xing (2004) that discovered a 

negative equity excess return for credit risk.  

On one hand ݎா,ିଵ exhibits predictive power, lower ݎா,ିଵ are observed with higher probabilities of 

default. On the other hand, historical equity return of firms approaching default may yield biased 

estimates for ߤ஺ and hence harm the precision of the model. It appears that using ߤ஺ ൌ max	ሺݎ,  ா,ିଵሻݎ

mitigates some of the inaccuracy caused by using historical returns, instead of forward-looking 

returns, by reducing the effect of negative realized returns. 

5.3 The volatility of the assets (࣌࡭) 

As a firm approaches a default event often both equity volatility and leverage increase. These two 

processes affect the calculation of assets volatility in opposite directions. We examine changes in 

equity and assets volatilities as the firms approach a default event. We use a sample including the 137 

defaulting firms and a comparison group of randomly selected 137 non-defaulting firms in parallel 

years, as explained earlier.  Table 9 panel a and Figure 5a show that the mean of historical equity 
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volatility of defaulting firms increases from 0.440 five years before default to 0.956 a year before 

default. In the same period, the average volatility of equity for the non-defaulting group increases 

slightly from 0.377 to 0.482. t tests and Wilcoxon rank-sum tests (panel a in Table 9) reveal that in all 

these years, equity volatility is statistically significant higher for defaulting firms than for non-

defaulting firms. 

This development in historical equity volatility is expected.  However, this is not the case for 

historical assets volatility.25 Figure 5b and panel b in Table 9 demonstrate that contrary to the non-

defaulting firms, historical assets volatility of defaulting firms, calculated by Merton Model, 

decreases, on average, as the time to the default event becomes shorter. Five years prior to default the 

mean of historical assets volatility is 0.249 while a year before default it is 0.206. In the same period, 

the mean of historical assets volatility of non-defaulting firms increases from 0.259 to 0.295. Whereas 

the historical assets volatility difference between defaulting firms and non-defaulting firms five years 

prior to default is statistically insignificant, it becomes negative and statistically significant in the year 

before default. The development in the median of historical assets volatility and Wilcoxon rank-sum 

tests portrait a similar picture and hence it seems that this pattern is not caused by outliers. 

We suspect that our findings regarding assets volatility are related to the fact that we use historical 

equity volatility rather than expected volatility. Historical volatility of equity is computed using prior 

year data whereas the equity value is current.  As a firm approaches default, its equity value decreases 

and its equity volatility increases. Hence using up-to-date equity value jointly with out-of-date equity 

volatility value causes an underestimation of assets volatility. To assess this hypothesis, we examine 

assets volatility calculated by the model, using equity volatility implied by stock options market 

prices as input, instead of historical equity volatility.  Implied volatility is forward-looking by nature. 

Bharath and Shumway (2008) showed that using implied volatility substantially improves Merton 

model results. We now examine the source of this improvement. It should also be noted that using 

                                                            
25  By historical assets volatility we refer to the volatility estimated by solving equations (2) and (4) 
simultaneously, using historical equity volatility as the input to the model.  We later discuss implied assets 
volatility, calculated similarly, using implied equity volatility as the input. 
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implied volatility substantially reduces model’s applicability since stock options are not available for 

all the firms. Therefore this examination is merely intended to assess the goodness of current 

practices in Merton model application. 

Following Bharath and Shumway (2008), for each firm we select the implied volatility of at-the-

money 30-day call option on its stocks. We use Optionmetrics data which is available since 1996. 

Thus, for observations of 1995 year-end we use the data of the first trading day in 1996 (a single 

trading day shift) and for other observations we simply use data from the last trading day of the year. 

Due to the limited availability of implied volatility data, our sample decreases from 41,831 annual 

observations to 14,003 and the number of defaults diminishes from 322 to 95.  

Table 10 and Figure 6 show the development in implied volatility of 40 defaulting firms and 40 non-

defaulting firms (the control group) in the five years preceding default.26 It appears that for both 

defaulting firms and non-defaulting firms, every year in our sample, the mean and median implied 

equity volatility is greater than that of historical equity volatility (panels a and b). The same holds for 

assets volatility calculated using implied volatility, compared to assets volatility calculated using 

historical volatility (panels c and d). However, the difference between implied equity (assets) 

volatility and historical equity (assets) volatility is statistically significant only for defaulting firms 

one year prior to default.  More interestingly, the mean of implied assets volatility of defaulting firms 

remains relatively steady when these firms approach default, rising moderately from 0.241 five years 

prior to default to 0.245 one year prior to default. These results demonstrate the distortion of asset 

volatilities calculated using historical equity volatilities 

Since this finding is based on a limited sample of 80 firms only we also compare historical volatility 

to implied volatility for the entire sample (Table 11). It appears that implied volatility is greater on 

average than historical volatility for defaulting and non-defaulting firms, for both equity and assets. 

The differences are statistically significant using t tests or Wilcoxon rank-sum tests. However, 

differences are larger for defaulting firms compared to non-defaulting ones. For example, while the 

                                                            
26 Of the 95 default events we found sufficient data of 5 years prior to the default event for 40 firms only. 
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mean of historical assets volatility is quite similar for defaulting and non-defaulting firms (0.319 and 

0.320 respectively), the implied assets volatility of defaulting firms is much larger than that for non-

defaulting firms (0.429 and 0.329 respectively). It is observed that for 68.4 percent of defaulting firms 

implied volatility (either equity or assets) is greater than historical volatility, compared to 53.5 

percent only among non-defaulting firms.  

These results suggest that the use of historical volatility (rather than expected volatility) might harm 

Merton model applications. This practice causes an underestimation of assets volatility. Table 12 

compares the AUC for two alternatives. The first is the benchmark model in which assets volatility 

஺ߪ)
௦௜௠௨௟.) is calculated by solving equations (2) and (4) simultaneously. In the alternative model the 

assets volatility is set equal to the equity volatility (ߪாିଵ) and the value of assets (ܣ) is calculated by 

solving equation (2). The AUC for the simultaneous equation (0.9207) is lower than the one for the 

volatility of equity (0.9280).  The AUC difference is statistically significant using DeLong, et al. 

(1988) test. It should be noted that equity volatility is always larger than assets volatility for all firms 

either defaulting or non-defaulting. This is a cross-firm effect that may be adjusted in the calibration 

process of the model. However, the calculated assets volatility (ߪ஺
௦௜௠௨௟.), using historical equity 

volatility in equation (2) and (4) underestimates assets volatility mainly for defaulting firms and 

hence reduces model’s power.   

 
5.4 Simplified model alternatives 

Bharath and Shumway (2008) suggested a naïve model, a simplified model that beats the complex 

application of the Merton model.27 The naïve model uses a default barrier identical to that of the 

original model (ܦ ൌ ܦܶܵ ൅ 0.5 ∙  assets ,(ܣ) ሻ and differs in three other parameters: assets valueܦܶܮ

volatility (ߪ஺) and expected assets returns (ߤ஺). The naïve model assumes that the assets value is the 

sum of equity and the default barrier (ܣ ൌ ܧ ൅  that the expected assets return equals the equity ;(ܦ

                                                            
27  There is no standard terminology for naming these models.  In this section we refer to the simultaneous 
solution of equations (2) and (4) as the ‘complex’ model (and as ‘Merton’) to distinguish it from the naïve 
method of Bharath and Shumway (2008) and other simplified methods. 
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return over the prior year ሺߤ஺ ൌ  ா,ିଵሻ; and that the assets volatility is a weighted average of theݎ

equity volatility and an enigmatic debt volatility (see equations 7 and 8). The AUC for this naïve 

model in our sample is 0.9223 which is higher than that of the “complex” model (0.9207). p value for 

this difference using DeLong et al. (1988) test is 0.698. Hence, the attractiveness of the naïve model 

is mainly its simplicity, not its power. We now examine why it performs so well despite its simplicity.  

We first show that the ‘naïve’ choice of asset value A = D+E and the asset drift ߤ஺ ൌ  ா,ିଵ, althoughݎ

easy to use, do not enhance the power of the model and are in fact inferior to the choices of the 

complex model. 

The value of assets in the naïve model is simply assumed to be the sum of market value of equity (ܧ) 

and the default barrier (ܦ). Table 13 shows the mean values of ln	ሺܦ/ܣሻ used in the complex model 

and ln	ሾ
ாା஽

஽
ሿ used in the naïve model, for various LTD multipliers (݇) of the default barrier equation. 

Both terms are inverse of leverage. As expected, inverse value of leverage is substantially smaller for 

defaulting firms compared to non-defaulting firms. For the non-defaulting firms the inverse-leverage 

mean of the complex model is similar to that of the naïve model (less than 2% differences). However, 

the mean values for defaulting firms are significantly larger in the naïve model than in the complex 

model (19-42% difference, increasing with k).  The leverage difference between defaulting and non-

defaulting firms is smaller in the naïve model for all k values. This is not surprising since the naïve 

model implicitly assumes that the debt value equals its accounting value (instead of its market value).  

This assumption ignores credit risk effect which substantially reduces the asset value of defaulting 

firms compared to non-defaulting ones.  This indicates that the firm's assets value calculated by the 

simultaneous solution provides stronger discriminative power for distinguishing defaulting firms from 

non-defaulting firms. Thus it seems that the method for computing the firm's assets value harms the 

naïve model discriminative power compared to the Merton model. 

The expected assets return in the naïve model equals the equity return in the prior year (ߤ஺ ൌ  ,(ா,ିଵݎ

we now compare it to a Merton model application using a CAPM estimate (ߤ஺ ൌ  ெ௉ୀ଴.଴଺).  Inߤ

section 5.2 we show that using ߤ஺ ൌ  ா,ିଵ has mixed effects on the discriminating power of theݎ
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model. In fact one can use ߤ஺ ൌ  ா,ିଵ also in the complex application. We show in table 7 (panel b)ݎ

that the AUC for this approximation is 0.9184 which smaller than 0.9207, the AUC of using ߤ஺ ൌ

 ெ௉ୀ଴.଴଺. Therefore it seems that the discriminative power of the naïve model is not a result of itsߤ

assets expected return (ߤ஺) specification.   

The last remaining potential source of the naïve model discriminative power is its assets volatility 

specification.  Figure 7 shows the evolution of ߪ஺
ே௔௜௩௘ for 137 defaulting firms as they approach 

default together with a control group of 137 non-defaulting firms.  We can see that contrary to ߪ஺ 

calculated in the simultaneous solution of (2) and (4), ߪ஺
ே௔௜௩௘ increases when firms approach default.  

Additionally, ߪ஺
ே௔௜௩௘ of defaulting firms is slightly higher than that of non-defaulting firms. These 

results suggest that indeed the naïve model formulation of assets volatility enhances its predictive 

power compared to the complex model. On the other hand, we argue above that the naïve model 

choices of assets value (ܣ) and assets expected return (ߤ஺) seem simplistic and inferior to the Merton 

model.  Hence, we examine several additional alternative models, summarized in Table 14. It shows 

that the naïve model is inferior to an alternative model (model 3) in which assets value (ܣ) is 

calculated by solving equation (2), expected assets return is ߤ஺ ൌ ,௙ݎሺ	ݔܽ݉  ா,ିଵሻ and assets volatilityݎ

equals the historical equity volatility (ߪ஺ ൌ  ா,ିଵ). Replacing assets value calculated from equationߪ

(2) with a simple accounting value (ܧ ൅  in model (4) slightly affects the model power, reducing (ܦ

the AUC from 0.9338 to 0.9337. As demonstrated in model (5) of Table 14, the naïve model choice 

of assets volatility (ߪ஺
ே௔௜௩௘) seems to have no advantage over setting the assets volatility equal to 

historical equity volatility. This causes only a small drop of the AUC from 0.9338 to 0.9333. 

Comparing model (4) to model (6) we find that setting assets expected returns to  

஺ߤ ൌ ,௙ݎሺ	ݔܽ݉ ஺ߤ ா,ିଵሻ is significant. Settingݎ ൌ  ா,ିଵ reduces model’s power, the AUC drops fromݎ

0.9337 in model (4) to 0.9263 in model (6). However, the AUC of model (6) is greater than the AUC 

of the naïve model and the difference is statistically significant. This result supports our finding that 

although the specification of assets volatility in the naïve model is better than in the simultaneous 

solution of equations (2) and (4), it is not optimal and it is inferior to an alternative such as simply 

using historical equity volatility. 
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6. Conclusions 

In this paper we examine the sensitivity of Merton model default prediction performance to its 

parameter specifications.  We assess the causes for this sensitivity and for prior studies lukewarm 

performance.  We conclude by providing a few prescriptions to enhance the model accuracy.  

Several alternatives for the application of the Merton model in default prediction are explored. For 

this purpose, we compare the Area Under the Curve (AUC) of Receiver Operating Characteristic 

(ROC) curves and use the DeLong et al. (1988) nonparametric test to measure the statistical 

differences between the ROC curves. We also examine how key inputs evolve over time prior to 

default, of defaulting and non-defaulting firms. Overall we find that the complex application of the 

Merton model as carried out in previous studies is inferior to other somewhat simplified applications 

of the model. The setting of the default barrier appears to have a small impact on the separation 

ability of the model. However, the specification of assets expected return and assets volatility is 

important. The current practice of using realized (historical) values of equity returns and equity 

volatility rather than forward-looking values substantially reduces the models’ ability to distinguish 

between defaulting and non-defaulting firms. This is mainly because of two reasons. First, historical 

returns result in under-biased estimates of equity volatility especially for defaulting firms.  Second, 

realized past returns of defaulting firms are substantially low while one would expect riskier stocks to 

offer higher expected return. We conclude by offering a specification that outperforms both the 

complex application and the naïve application (Bharath and Shumway, 2008) of the Merton model. 

This study attempts to re-evaluate the current practices in the application of the Merton model. It 

appears that the reliance of academic literature on sketchy descriptions by practitioners has its 

disadvantages. Future research on this topic may have other directions, not necessarily in line with 

what is commonly known as practitioners practice. This study demonstrates that enhancements in the 

estimation of the expected assets return and assets volatility may significantly improve the quality of 

the model output.  
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Tables 

Table 1:  sample distribution over time 

This table reports the observations’ distribution in the sample period. The table presents the number 

of firms observed, the number of default events during the year and the ratio between them for each 

year in the sample.  

Ratio of default 
events to the 
observations    

Number of default 
events (during the 

Year)  

Number of 
observations 

Year 

0.24% 3 1238 1989 

0.57% 7 1234 1990 

0.64% 8 1247 1991 

0.39% 5 1268 1992 

0.30% 4 1323 1993 

0.19% 3 1617 1994 

0.00% 0 1778 1995 

0.26% 5 1903 1996 

0.56% 12 2129 1997 

0.79% 18 2268 1998 

1.31% 31 2369 1999 

0.94% 23 2438 2000 

2.43% 60 2469 2001 

1.65% 38 2304 2002 

1.21% 27 2235 2003 

0.40% 9 2241 2004 

0.47% 11 2322 2005 

0.04% 1 2378 2006 

0.21% 5 2423 2007 

0.67% 16 2387 2008 

1.59% 36 2260 2009 

0.77% 322 41831 Total 
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Table 2:  Model variables - summary statistics 

This table reports summary statistics for all the variables used in the Merton model. BA (Book 

Assets) is the book value of Total Assets; LTD is the Long Term Debt ; STD is the Short Term Debt; 

E is the firm's market value of equity (the product of the price per share times the number of 

outstanding shares); ࢘ࡱ,ି૚ is the annual firm’s equity return (the average daily equity return times the 

number of trading days); ߪா,ିଵ is the annual firm’s stock return volatility (the standard deviation of 

daily stock returns times the square root of the trading days in a year); ߚா is the beta computed from 

daily return and the value-weighted CRSP index (NYSE/NASDAQ/ AMEX).  BA, LTD, STD and E 

are measured in millions of US dollars. The other variables are presented in decimal fractions. The 

data is as of December 31 of each year for the period 1988-2008 for default prediction (and 

observations) in the period 1989-2009 

Variable  Mean  Std. dev.  Min  Max 

BA  Book value of assets  11,877 80,243  150  3,771,200
LTD  Long term debt  1,911  12,676  0.001  486,876 
STD  Short term debt  2,142  16,411  0.001  575,319 
E  Market value of equity  4,750  17,171  0.893  508,329 
  ૚ି,ࡱ࢘ Stock return  0.140  0.554  ‐10.234 12.625 

  ଵି,ࡱ࣌ Stock return volatility  0.434  0.265  0.046  4.807 

  ࡱࢼ Beta of stock return  0.805  0.599  ‐6.557  7.850 
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Table 3:  Area under ROC curves for various specifications of the default barrier 

This table shows AUC (area under the ROC curve) for five different values of the LTD multipliers (k) 

in the default barrier specification (ܦ ൌ ܦܶܵ ൅ ݇ ∙  where STD is short-term debt and LTD is ,(ܦܶܮ

the long-term debt . The expected return on the firm’s assets is set to be ߤ஺ ൌ  ெ௉ୀ଴.଴଺; i.e. based onߤ

the ߚ஺ of the assets extracted from historical ߚா of equity and the assumption that the market 

premium equals 0.06.  P values are of DeLong, et al. (1988) test for the difference between the AUC 

of the particular k and the AUC of k=0.5.  

 

K  AUC 
P value for 

difference from 
result for k=0.5

0.1  0.9197   0.349  
0.3  0.9206   0.995  
0.5  0.9207   ‐  
0.7  0.9203   0.156  
0.9  0.9198   0.062 

 

 

Table 4:  Evolution of long-term debt to assets ratio prior to default  

This table shows the evolution of LTD/A for 137 firms on December 31 for each of the 5 years 

preceding the default year. A is the value of assets extracted from Merton model assuming a default 

barrier of ܦ ൌ ܦܶܵ ൅ 0.5 ∙  where STD is short-term debt and LTD is long-term debt. Asset’s ܦܶܮ

expected return is assumed to be ߤ஺ ൌ  ஺ of the assets extracted fromߚ ெ௉ୀ଴.଴଺; i.e. based on theߤ

historical ߚா of equity and the assumption that the market premium equals 0.06.  A control group of 

137 non-defaulting firms is added for comparison. P values are for differences between the group of 

defaulting firms and non-defaulting firms. 

Years 
before 
default 

Defaulting  Non‐Defaulting  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  137  0.433  0.357  137  0.269  0.190  0.000  0.000 

4  137  0.489  0.457  137  0.249  0.191  0.000  0.000 

3  137  0.576  0.509  137  0.277  0.210  0.000  0.000 

2  137  0.703  0.687  137  0.275  0.227  0.000  0.000 

1  137  0.754  0.727  137  0.325  0.247  0.000  0.000 
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Table 5:  Model’s results for various specifications of the default barrier 

This table shows the summary statistics for assets value (ܣ) and assets volatility (ߪ஺) in Merton model 

under the five different specifications of the LTD multipliers (k) used for the default barrier value 

ܦ) ൌ ܦܶܵ ൅ ݇ ∙  where STD is the short-term debt and LTD is the long-term debt. The expected ,(ܦܶܮ

return on the firm’s assets is set to ߤ஺ ൌ  ஺ of the assets extracted fromߚ ெ௉ୀ଴.଴଺; i.e. based on theߤ

historical ߚா of equity and assuming the market premium equals 0.06.  . P values are listed for t tests 

and Wilcoxon sign-ranked tests. 

Panel a – Assets value (A) 

K  Obs. Mean Median 

P value for difference from 
result for k=0.5 

t test 
Sign‐ranked 

test 

0.1  41831  6987 989 0.000 0.000 
0.3  41831  7354 1052 0.000 0.000 
0.5  41831  7721 1118 ‐ ‐ 
0.7  41831  8087 1179 0.000 0.000 
0.9  41831  8455 1239 0.000 0.000 

 
 
Panel b – Assets volatility (࣌࡭) 

K  Obs. Mean Median 

P value for difference from 
result for k=0.5 

t test 
Sign‐ranked 

test 

0.1  41831   0.308   0.259  0.000  0.000 
0.3  41831   0.290   0.243  0.000  0.000 
0.5  41831   0.276   0.230  ‐  ‐  
0.7  41831   0.264   0.218  0.000  0.000 
0.9  41831   0.254   0.208  0.000  0.000
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Table 6:  Estimated probabilities of default for various specifications of the default 

barrier – summary of statistics 

This table presents descriptive statistics for the estimated probability of default under various 

specifications of k, the LTD multiplier used the default barrier equation (ܦ ൌ ܦܶܵ ൅ ݇ ∙  where ,(ܦܶܮ

STD is the short-term debt and LTD is the long-term debt. The expected return on the firm’s assets is 

set to ߤ஺ ൌ  ா of equity andߚ ஺ of the assets calculated using historicalߚ ெ௉ୀ଴.଴଺; i.e. based on theߤ

assuming the market premium equals 0.06. 

 

K  Obs.  Mean  Median 
5% 

percentile 
95% 

percentile 

P value for difference 
from result of k=0.5 

t test 
Sign‐ranked 

test 

0.1  41831  0.0166  2.26 ∙ 10ି଼ 1.81 ∙ 10ି଼ 2.84 ∙ 10ି଼ 0.000  0.000 
0.3  41831  0.0183  1.44 ∙ 10ି଻ 1.20 ∙ 10ି଻ 1.74 ∙ 10ି଻ 0.000  0.000 
0.5  41831  0.0196  4.67 ∙ 10ି଻ 3.98 ∙ 10ି଻ 5.58 ∙ 10ି଻ ‐  ‐ 
0.7  41831  0.0205  1.12 ∙ 10ି଺ 9.64 ∙ 10ି଻ 1.32 ∙ 10ି଺ 0.000  0.000 
0.9  41831  0.0214  2.18 ∙ 10ି଺ 1.84 ∙ 10ି଺ 2.49 ∙ 10ି଺ 0.000  0.000 
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Table 7:  Area under the ROC curve  

for various specification of firm’s asset expected return (࡭ࣆ) 

This table shows the results of the model for three alternatives of the expected return on the firm’s 

assets (ߤ஺). ߤெ௉ୀ଴.଴଺ is calculated for each firm using: ߤெ௉ୀ଴.଴଺ ൌ ݎ ൅ ஺ߚ ∙ 0.06. where ݎ is the risk 

free interest rate (1-year treasury bills yield to maturity) and ߚ஺ is the beta of the firm's assets. 	

ெ௉ୀௌ&௉ߤ ெ௉ୀௌ&௉ହ଴଴ is calculated usingߤ	.૚ is the annual equity return for the previous yearି,ࡱ࢘ ൌ

ݎ ൅ ஺ߚ ∙ ሺܵ&ܲ500ିଵ െ  ሻ, where ܵ&ܲ500ିଵ is the annual rate of return of the S&P500 index in theݎ

previous year.  For reference we added a fixed expected return of 0.09.  In this table use ܦ ൌ ܦܶܵ ൅

0.5 ∙  for the default barrier, where STD is the short-term debt and LTD is the long-term debt. The ܦܶܮ

sample includes 41,831 observations of which 322 are defaults.   

Panel a – Expected asset return 
 
Specification  Obs.  Mean  Median  Std. 

dev. 
Min  Max 

 ୀ૙.૙૟ࡼࡹࣆ 41831   0.077   0.074   0.033   ‐0.299   0.440  
 ૚ି,ࡱ࢘ 41831   0.140   0.145   0.554   ‐10.234   12.625  

 ૞૙૙ࡼ&ࡿୀࡼࡹࣆ 41831   0.071   0.063   0.135   ‐1.011   1.702  
 ݎ 41831   0.045   0.050   0.019   0.012   0.084  

,ݎ൫࢞ࢇ࢓  ૚൯ି,ࡱ࢘ 41831   0.274   0.145   0.386   0.012   12.625  

,ݎሺ࢞ࢇ࢓  ୀ૙.૙૟ሻࡼࡹࣆ 41831  0.078   0.074   0.032   0.012   0.440  
૙. ૙ૢ  41831   0.090   0.090   0.000   0.090   0.090 

 
 
Panel b – AUC (Area under the ROC curve) 
 

Specification  AUC 
P-Value for 

difference from 
 ୀ૙.૙૟ࡼࡹࣆ

P-Value for 
difference from 

 ૚ି,ࡱ࢘

  ୀ૙.૙૟ࡼࡹࣆ 0.9207 -  0.6614  

  ૚ି,ࡱ࢘ 0.9184 0.6614  -  

  ૞૙૙ࡼ&ࡿୀࡼࡹࣆ 0.9105 0.0000  0.1351  

  ݎ 0.9210 0.1241  0.6076  

,ݎ൫࢞ࢇ࢓   ૚൯ି,ࡱ࢘ 0.9235 0.4704  0.0386  

,ݎሺ࢞ࢇ࢓  ୀ૙.૙૟ሻࡼࡹࣆ 0.9207 0.0000  0.6527 

૙. ૙ૢ   0.9095 0.0000  0.1332 
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Table 8:  Evolution of equity and assets returns prior to default 

This table shows the evolution of historical equity return (ݎா,ିଵ) and expected asset returns (ߤ஺ ൌ

 ெ௉ୀ଴.଴଺ߤ  .ெ௉ୀ଴.଴଺) for 137 firms on December 31 for each of the 5 years preceding the default yearߤ

is based on the ߚ஺ (assets beta) calculated from historical ߚா (equity beta) and assuming the market 

premium equals 0.06.  A control group of 137 non-defaulting firms is used for comparison.  P values 

are for differences between the group of defaulting firms and non-defaulting firms. 

Panel a - Annualized equity return for the previous year (࢘ࡱ,ି૚) 

Years 
before 
default 

Defaulting  Non‐Defaulting  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  137  0.207   0.218   137 0.249  0.178  0.479   0.573 

4  137  0.069   0.063   137 0.230  0.167  0.002   0.001 

3  137  0.004   0.014   137 0.103  0.089  0.060   0.056 

2  137  ‐0.152   ‐0.119   137 0.145  0.144  0.000   0.000 

1  137  ‐0.679   ‐0.613  137 0.068  0.130 0.000   0.000

 

Panel b – Expected asset return ࡭ࣆ ൌ  ୀ૙.૙૟ࡼࡹࣆ

Years 
before 
default 

Defaulting  Non‐Defaulting  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  137  0.074   0.072   137 0.076  0.073  0.611   0.627 

4  137  0.078  0.071   137 0.081  0.077  0.325   0.285 

3  137  0.077   0.075   137 0.082  0.080  0.087   0.167 

2  137  0.068   0.065   137 0.078  0.074  0.003   0.001 

1  137  0.050   0.050  137 0.065  0.065  0.000   0.000
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Table 9:  Evolution of volatility prior to default 

This table shows the evolution of equity’s volatility (ߪா,ିଵ) and asset’s volatility (ߪ஺) for 137 firms on 

December 31 for each of the 5 years preceding the default year. ߪா,ିଵ is the annualized standard 

deviation of daily stock returns in the year before. ߪ஺ is extracted from simultaneous solution of 

equations (2) and (4) for the Black-Scholes model when assuming default barrier is ܦ ൌ ܦܶܵ ൅ 0.5 ∙

஺ߤ and expected assets return is ܦܶܮ ൌ  ஺ of the assets extracted fromߚ ெ௉ୀ଴.଴଺; i.e. based on theߤ

historical ߚா of equity and assumption on the market premium to be equal to 0.06. STD is short-term 

debt and LTD is the long-term debt. A control group of 137 non-defaulting firms was used for 

comparison. P values are for differences between the group of defaulting firms and non-defaulting 

firms. 

Panel a – Equity volatility (࣌ࡱ) 

Years 
before 
default 

Defaulting  Non‐Defaulting  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  137  0.440   0.388   137 0.377  0.323  0.013   0.000 

4  137  0.463   0.431   137 0.374  0.312  0.000   0.000 

3  137  0.516   0.483   137 0.399  0.375  0.000   0.000 

2  137  0.588   0.519   137 0.405  0.365  0.000   0.000 

1  137  0.956   0.888  137 0.482  0.413  0.000   0.000

 

Panel b – Assets volatility (࣌࡭) 

Years 
before 
default 

Defaulting  Non‐Defaulting  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  137  0.249   0.210   137  0.259   0.219   0.630   0.726  

4  137  0.243   0.206   137  0.264   0.215   0.305   0.277  

3  137  0.233   0.196   137  0.267   0.235   0.063   0.013  

2  137  0.229   0.164   137  0.269   0.235   0.063   0.000  

1  137  0.206   0.149  137  0.295   0.263   0.000   0.000 
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Table 10:  Evolution of implied volatility of equity and assets prior to default 

This table shows the evolution of implied volatility of equity (ߪா
௜௠௣௟௜௘ௗ) and the derived assets 

volatility (ߪ஺
௜௠௣௟௜௘ௗ) for 40 firms on December 31 for each of the 5 years preceding the default year. 

ாߪ
௜௠௣௟௜௘ௗ is the annualized implied volatility of at-the money call options on firms stocks.	ߪா,ିଵ is the 

annualized standard deviation of daily stock returns in the prior year. Assets volatility is calculated by 

solving equations (2) and (4) simultaneously, assuming the default barrier is ܦ ൌ ܦܶܵ ൅ 0.5 ∙  ,ܦܶܮ

where STD and LTD is the short-term and the long-term debt respectively. ߪ஺,ିଵ is calculated using 

historical volatility (ߪா,ିଵሻ as an input for the model, and similarly ߪ஺
௜௠௣௟௜௘ௗ is calculated using 

implied equity volatility (ߪா
௜௠௣௟௜௘ௗ). A control group of 40 non-defaulting firms is used for 

comparison. P values are for differences between results achieved when using ߪா
௜௠௣௟௜௘ௗ instead of 

 .ா,ିଵߪ

Panel a: Implied equity volatility (࣌ࡱ
 of defaulting (ா,ିଵߪ) vs. historical equity volatility (ࢊࢋ࢏࢒࢖࢓࢏

firms 

Years before 
default 

Implied volatility  Historical volatility  P value for difference 

Obs. Mean  Median Obs. Mean  Median t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  40 0.410   0.388   40 0.411  0.348  0.513  0.872  

4  40 0.453   0.405   40 0.422  0.368  0.029  0.116  

3  40 0.491   0.384   40 0.486  0.402  0.387  0.563  

2  40 0.540   0.539   40 0.507  0.449  0.154  0.313  

1  40 0.903   0.855  40 0.793  0.733 0.008  0.017 

 

Panel b: Implied equity volatility (࣌ࡱ
-of non (ா,ିଵߪ) vs. historical equity volatility (ࢊࢋ࢏࢒࢖࢓࢏

defaulting firms 

Years before 
default 

Implied volatility  Historical volatility  P value for difference 

Obs. Mean  Median Obs. Mean  Median t test 
Wilcoxon rank‐ 
sum (Mann‐
Whitney) 

5  40 0.454   0.448   40 0.429  0.410  0.116  0.452  

4  40 0.431   0.410   40 0.426  0.392  0.398  0.914  

3  40 0.463   0.406   40 0.446  0.415  0.162  0.452  

2  40 0.432   0.403   40 0.432  0.405  0.493  0.957  

1  40 0.537   0.525  40 0.548  0.483 0.669  0.788 
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Panel c: Implied assets volatility (࣌࡭
 of defaulting (஺,ିଵߪ) vs. historical assets volatility (ࢊࢋ࢏࢒࢖࢓࢏

firms 
 

Years 
before 
default 

Implied volatility  Historical volatility  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  40  0.241   0.203   40 0.242  0.212  0.930   0.893 

4  40  0.232   0.169   40 0.214  0.170  0.065   0.098 

3  40  0.215   0.166   40 0.207  0.171  0.422   0.375 

2  40  0.228   0.183   40 0.210  0.161  0.292   0.282 

1  40  0.245   0.197  40 0.202  0.128 0.028   0.035

 
Panel d: Implied assets volatility (࣌࡭

-of non (஺,ିଵߪ) vs. historical assets volatility (ࢊࢋ࢏࢒࢖࢓࢏
defaulting firms 
 

Years 
before 
default 

Implied volatility  Historical volatility  P value for difference 

Obs.  Mean  Median  Obs.  Mean  Median  t test 

Wilcoxon 
rank‐ sum 
(Mann‐
Whitney) 

5  40  0.338   0.312   40 0.311  0.272  0.093   0.320 

4  40  0.322   0.282   40 0.320  0.292  0.877   0.872 

3  40  0.327   0.268   40 0.315  0.284  0.372   0.528 

2  40  0.309   0.278   40 0.309  0.290  0.982   0.717 

1  40  0.333   0.323  40 0.333  0.323 0.996   0.819
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Table 11:  Historical volatility vs. implied volatility 

This table shows the historical volatility and implied volatility of equity and assets for 14,003 annual 

observations for the years 1995-2008.  Implied volatility of equity is the annualized implied volatility 

of the 30-days at-the-money call option on the firms stocks. Historical volatility of equity is the 

annualized standard deviation of daily stock returns in the year preceding the annual observation. 

Assets volatility is calculated by solving equations (2) and (4) simultaneously, assuming the default 

barrier is ܦ ൌ ܦܶܵ ൅ 0.5 ∙  STD is short-term debt and LTD is the long-term debt. Historical .ܦܶܮ

assets volatility is calculated using historical equity volatility as an input to the model, and implied 

assets volatility is calculated using implied equity volatility. P values are for differences between 

historical volatility and implied volatility. 

Group  Obs. 

Historical 
volatility 

Implied 
volatility 

P value for difference  Obs. 
Implied> 
Historical 

(%) 
Mean  Median  Mean  Median  t test 

Wilcoxon rank‐ 
sum (Mann‐
Whitney) 

Non‐defaulting                  

Equity  13908   0.452   0.389  0.466  0.399  0.000  0.000   53.5
Assets  13908   0.320   0.270  0.329  0.279  0.000  0.000   53.5 

Defaulting                 

Equity  95  0.836   0.791  0.996  0.906  0.000  0.000  68.4
Assets  95  0.319   0.273  0.429  0.346  0.000  0.000   68.4
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Table 12:  Area under the ROC curve for various specifications of assets volatility (࣌࡭) 

This table shows AUC (area under the ROC curve) for two alternatives. The first is the benchmark 

model in which assets volatility (ߪ஺
௦௜௠௨௟.) is calculated from simultaneous solution of equations (2) 

and (4) and the other is a model in which assets volatility is set equal to the equity volatility (ߪா,ିଵ) 

and the assets value (ܣ) is calculated by solving equation (2).  ߪா,ିଵ is the annualized average equity 

return in the previous year. The default barrier is ܦ ൌ ܦܶܵ ൅ ݇ ∙  where STD is short-term debt ,ܦܶܮ

and LTD is the long-term debt. The expected return on the firm’s assets is set to ߤ஺ ൌ  ெ௉ୀ଴.଴଺ߤ

(based on the ߚ஺ of the assets calculated from historical ߚா of equity and assuming the market 

premium equals 0.06).  P values are of DeLong, et al. (1988) test for the difference between the AUC 

of the alternative specifications. 

  ࡭࣌ AUC 

P value for 

difference from 

result for ࣌࡭
.࢒࢛࢓࢏ࡿ

 

࡭࣌
.࢒࢛࢓࢏ࡿ

   0.9207   ‐  

  ૚ି,ࡱ࣌ 0.9280   0.012  
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Table 13:  Debt ratio comparison 
 

This table shows the average values for ln(A/D) of the Merton model and the respective variable from 

the naïve model for five LTD multiplier (k) values. The fourth column lists the difference between the 

second column and the third column. The sample included 322 defaulting observations and 41,509 

non-defaulting observations. 

LTD 
multiplier  

(k) 

mean ln(A/D) 
(Merton model) 

mean ln[(E+D)/D] 
(naive model) 

relative difference  
(naïve – Merton) 

Defaulting  
Non-

defaulting 
Defaulting  

Non-
defaulting  

Defaulting  
Non-

defaulting  
0.1 0.442 1.574 0.525 1.590 18.7% 1.0% 

0.3 0.330 1.380 0.415 1.397 25.7% 1.2% 

0.5 0.269 1.256 0.353 1.275 31.2% 1.5% 

0.7 0.228 1.164 0.312 1.185 36.8% 1.8% 

0.9 0.198 1.092 0.281 1.113 41.9% 1.9% 

 

Table 14: Alternative model specification AUCs 

This table shows AUC (area under the ROC curve) for several specifications of the Merton model.  In 

all specifications the default barrier is ܦ ൌ ܦܶܵ ൅ 0.5 ∙  where STD and LTD is the short and ,ܦܶܮ

long-term debt respectively. The assets value is either a solution of equations (2) and (4) or simply the 

sum of market value of equity (ܧ) and the default barrier (ܦ). The assets expected returns alternatives 

include: ߤ஺ ൌ  ா of equity, assumingߚ ஺ of the assets calculated using historicalߚ ெ௉ୀ଴.଴଺ based onߤ

the market premium equals 0.06; or ݎா,ିଵ the equity return in the previous year; or the larger of ݎா,ିଵ 

and ݎ (the risk-free interest rate, 1-year treasury bills yield to maturity).   Assets volatility is either a 

solution of equations (2) and (4); or the annualized volatility of daily equity return in the previous 

year (ߪா,ିଵ); or is based on Bharath and Shumway specification of assets volatility (ߪ஺
ே௔௜௩௘). P values 

are based on DeLong, et al. (1988) test for the difference between the AUCs of the alternative 

specifications. 

Model Value of 
assets (ܣ) 

Expected return 
on assets (ߤ஺) 

Assets 
volatility (ߪ஺) 

AUC P value for difference 
From 

model 1 
(complex) 

From model 2 
(naïve) 

1 (complex) Merton* ߤெ௉ୀ଴.଴଺  Merton* 0.9207 - 0.698 
2 (naïve) E+D ݎா,ିଵ  ߪ஺

ே௔௜௩௘  0.9223 0.698 - 
3 (modified) Merton** max	ሺݎா,ିଵ,  ா,ିଵ  0.9338 0.000 0.000ߪ  ሻݎ

4 E+D max	ሺݎா,ିଵ,  ா,ିଵ  0.9337 0.000 0.000ߪ  ሻݎ

5 E+D max	ሺݎா,ିଵ, ஺ߪ  ሻݎ
ே௔௜௩௘  0.9333 0.000 0.000 

6 E+D ݎா,ିଵ  ߪா,ିଵ  0.9263 0.145 0.003 

* refers to the simultaneous solution of equations (2) and (4) 

**refers to the solution of equation (2) 
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Figure 4: The average annual rate of return on the firm’s equity in the previous year (ݎா,ିଵ) and the 

average expected assets return (ߤ஺) while the defaulting firms (137 firms) approach the default event.  

஺ߤ ൌ  ா of equity and assuming theߚ ஺ of the assets calculated from historicalߚ ெ௉ୀ଴.଴଺ (based on theߤ

market premium equals 0.06).  A control group of 137 non-defaulting firms is used for comparison.  

Average annualized stock return (ݎா,ିଵ) 

 

Expected assets return (ߤ஺ ൌ  (ெ௉ୀ଴.଴଺ߤ
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Figure 6: The average equity return volatility (ߪாିଵ) and average assets return volatility (ߪ஺) while 

the defaulting firms (40 firms) approach the default event. A control group of 40 non-defaulting firms 

is used for comparison.  See Table 10 for the data and model specifications.  

Equity returns volatility (ߪாିଵ) 

 

Assets returns volatility (ߪ஺) 

 
  

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

‐6 ‐5 ‐4 ‐3 ‐2 ‐1 0

Years from default

Implied ‐ non‐default Historical non‐default

Implied ‐ default Historical ‐ default

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

‐6 ‐5 ‐4 ‐3 ‐2 ‐1 0

Years from default

Implied ‐ non‐defaulting Historical ‐ non‐defaulting

Implied ‐ defaulting Historical‐defaulting



Figu

defa

repr

and 

 

ure 7: The v

aulting and n

resents avera

the other the

values of th

non-defaultin

ages of 137 fi

e non-default

The

he annual as

ng firms, ver

firms (averag

ting firms (a 

e naïve mod

45 

ssets volatilit

rsus years pr

ged by year t

control grou

del assets ret

ty, calculate

rior to defau

o default).  O

up selected ra

turns volatil

d by the na

ult, using k=

One curve sh

andomly in m

lity (ߪ஺
ே௔௜௩௘)

aïve model (

=0.5.  Each o

hows the def

matching per

)  

஺ߪ)
ே௔௜௩௘), for

of the curves

faulting firms

riods).  

  

r 

s 

s 


